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Statistics for the Surgeon 
 

Dr. Ajeesh Sankaran, 

KIMS Al Shifa Hospital, Kerala 

 

Men may construe things after their fashion, 

Clean from the purpose of the things themselves 

- Cicero in William Shakespeare’s Julius Caesar 

Basic statistical concepts and techniques have been discussed already in a prior ISSH 

Article of the Month. This article is focused on the practical aspects of statistics. Mostly 

it deals with understanding why statistical testing is necessary. Then we move on to 

how to perform these analyses with the help of some (free!) resources detailed at the 

end. 

This article may seem rather stretched out and lengthy, but that is not an attempt to 

break the record for the longest ISSH Article. Instead, it is an honest effort to cover all 

the aspects of statistics that would be essential to see any study through. Since 

surgeons are not exactly famed for their mathematical prowess, this involves fairly long 

tracts of dreary prose. So interspersed are ‘Time Outs’ in dark boxes, which are short 

vignettes intended to illustrate a point that needs deep thought. A quick revision of the 

earlier statistics article is definitely recommended. 

 

1. Understanding Probability 

We start with the most abused of all examples in statistics – the toss of a coin. When 

a fair coin is tossed, it is nearly impossible to predict exactly which face it would land 

on. A large number of factors are at play here, which cannot be solved for exactly. 

However, we know that only two outcomes are possible - Heads [H] or Tails [T]. We 

can also understand that both these outcomes should be equally likely. In other words, 

the coin should land H or T about half the number of times. This is the traditional sense 

that probability is understood in, that H has a probability of 1/2. Probability of the event 

‘H’ can be denoted by p[H]. We can then straight away express the coin toss situation 

as follows: 

p[H] = ½ = p[T] 

The above expression makes it clear that i) there are two events and two events only, 

ii) both are equally likely. 

Let us move on to another battered example – throw of a die. The usual die is a cube, 

with six faces numbered from 1 through 6. Using the same arguments as above, we 
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can conclude that each number has a 1/6 probability of turning up. We can express this 

as 

p[1] = p[2] = p[3] = p[4] = p[5] = p[6] = 1/6 

Probability of an event is not always so easy to interpret. For e.g., many weather 

services provide an estimate of the likelihood of rain/ snow over a time period (please 

search Google Weather and it may provide information like “60% chance of 

precipitation tonight”). What do these percentage figures mean? ‘50% rain’ or ‘60% 

rain’ obviously has no meaning. One way to look at it is in the context of repeated 

events. If we toss a coin 100 times, we expect ‘H’ about 50 times. So, when we say 

“50% chance of snow tonight”, we can understand that of 100 nights with similar 

weather conditions, 50 nights can be expected to be snowy. 

This view of probability in the context of repeated events or measurements is an 

extremely useful one in statistics. When we expect 50 Heads out of a 100 coin tosses, 

we also have to accept that often we may not get exactly 50 heads. So, when we get 

55 heads out of 100 throws, can we confidently conclude that the coin is fair or unfair? 

The answer to this question is the crux of all inferential statistics. 

 

2. The Need for Statistical Testing 

After any data is compiled, it is obviously useful to visualise it in the form of graphs/ 

charts etc or summarise it in the form of a small set of numbers. As the amount of data 

increases, it becomes more and more difficult for the human mind to grasp any meaning 

out of the data set. When the same set is reduced to a Mean and Standard Deviation, 

for example, we have immediately gained an easy understanding of the entire set. Such 

‘Descriptive Statistics’ are basically summary figures of two aspects of data – what is 

an average or representative value of this data and how far are the other data points 

from this representative value. The first category of values are the measures of central 

tendency and the second category measures of dispersion. Put together they attempt 

to give a snapshot of all the data that we have. These also allow us to compare two or 

more related data sets. For e.g., we can compare the Mean heights of Boys and Girls 

of a certain age and conclude which group is taller. 

While the utility of descriptive statistics is easily appreciated, the need for the other 

major area of ‘Inferential Statistics’ is not so easily understood. Inferential Statistics 

deals with Hypothesis Testing, basically telling us whether the hypothesis that we have 

based any study upon is to be accepted or not. Going back to the earlier example of 

100 coin tosses, what should our conclusion be about the ‘fairness’ of the coin if we 

land 55 Heads? In fact, we can calculate that the probability of 55 Heads in 100 tosses 

with a fair coin is 4.8% (see Appendix 5). This is sufficiently low to raise our suspicions. 

With 60 Heads in 100, the probability is only 1%. So, while 60 Heads is not impossible, 

we would be justified in thinking that there is some problem with the coin that makes 

it more likely to land Heads. 
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3. Understanding Hypothesis Testing 

For this section, let us design an experiment with Red pills and Blue pills. We have 

before us a very large number of pills which are either Red or Blue. This constitutes the 

population of the study. Out of this, we begin by choosing 10 pills at random. This 

represents our sample. We observe that we have 6 Red and 4 Blue pills. 

3.1. The Null Hypothesis 

We assume that there are an equal number of Red and Blue pills in the study population. 

This means that there is an equal probability of choosing either one of them. We can 

represent this by 

p[R] = p[B] = ½ 

The Null Hypothesis is just this assumption that there is no difference between these 

groups, in this case meaning an equal probability of Red and Blue pills. In clinical 

studies, the Null Hypothesis would postulate that there is no difference between any of 

the groups involved. All our testing is then directed to either accept or reject this Null 

Hypothesis. Designating the Null Hypothesis by {H0}, for our Red/Blue pill study we 

have 

{H0}  p[R] = p[B] (=1/2) 

 

 

THE IMPROBABLE WORLD 

The game of roulette at the Monte Carlo casino is played on a wheel with alternating black and red slots. Bets 

are placed on which slot the ball would land in after the wheel is set in motion. On August 18, 1913, the ball 

fell into black slots 26 times in a row. Such an event has a probability of only 1 in 136 million. Gamblers bet 

against black in increasing amounts believing that a red was due. Their losses totaled millions of francs in 

1913 terms! This is a popular illustration of the Gambler’s Ruin or Fallacy. Basically, we are instinctively 

programmed to believe that somehow the probability of getting a red should be higher after a string of blacks. 

However, it is important to remind ourselves that each wheel spin is independent of all others before it and, 

hence, the probability is the same for every throw. 

 Cut to August 6, 1945, Hiroshima. Tsutomu Yamaguchi, an engineer with Mitsubishi, was preparing to return 

home after a business trip when the first nuclear bomb in history fell 3kms away. Having survived with 

radiation burns and temporary blindness, he returned to his hometown in, where else, Nagasaki. The resolute 

Yamaguchi returned to work on August 9, in time to be hit by the last nuclear bomb in history. Yamaguchi 

agonized through radiation sickness for weeks but survived to be officially honoured by the Japanese 

government in 2009 as a survivor of both bomb blasts. Moral of the story: Improbable events are not 

impossible. 
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3.2. The Alternate Hypothesis 

Usually, the opposite of the Null Hypothesis, the Alternate Hypothesis mostly postulates 

that there is a difference between the groups. If we designate this by {H1}, we can 

express this for our study as 

{H1}  p[R]  p[B] 

This expression tells us simply that the Alternate Hypothesis states that the probability 

of picking a Red pill is different from that of a Blue pill, implying that they are not equal 

in number in our population. 

A word of caution: setting up the Null and Alternate Hypotheses may look like 

overstating the obvious. But having them clearly defined is a necessary and important 

step for all statistical analysis. In large or multi-faceted studies, this can be a source of 

much confusion, ending up with coming to improper conclusions regarding the results 

of the study. 

3.3. Hypothesis Testing 

In our study, the Null Hypothesis basically states that there an equal number of Red 

and Blue pills in the population. Our sample of 10 pills contained 6 Red and 4 Blue pills. 

Hypothesis testing gives us the probability of finding such data, given that the Null 

Hypothesis is true. This probability is what is designated as the ‘p – value’. When 

this probability is sufficiently low, we would be justified in rejecting the Null Hypothesis. 

For our example, the Null Hypothesis requires p[R] = ½. Given this value, it is possible 

to calculate the probability of getting exactly 6 Reds out of 10. Let’s represent that by 

p[6R, 4B]. Some mathematics leads us to, 

p[6R, 4B] = 0.2051  

So even if there were an equal number of Red and Blue pills in the population, there is 

a good 20.5% chance of drawing 6 Red ones in 10. Table 1 depicts the entire spectrum 

of possibilities in drawing 10 pills and their associated probabilities, given that the Null 

Hypothesis is true. 

0 Reds, 10 Blues p[0R, 10B] 0.0009 

1 Red, 9 Blues p[1R, 9B] 0.0098 

2 Reds, 8 Blues p[2R, 8B] 0.0439 

3 Reds, 7 Blues p[3R, 7B] 0.1172 

4 Reds, 6 Blues p[4R, 6B] 0.2051 

5 Reds, 5 Blues p[5R, 5B] 0.2461 

6 Reds, 4 Blues p[6R, 4B] 0.2051 

7 Reds, 3 Blues p[7R, 3B] 0.1172 
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8 Reds, 2 Blues p[8R, 2B] 0.0439 

9 Reds, 1 Blue p[9R, 1B] 0.0098 

10 Reds, 0 Blue p[10R, 0B] 0.0009 

 

 

Figure 1 depicts these probabilities in a bar chart. While the symmetry is visually 

striking, a sobering feature is the probability of drawing 5 Reds. Even when there are 

an equal number of Red pills and Blue pills in the population, there is less than 25% 

chance of getting exactly 5 Reds out of 10 pills! This non intuitive aspect of the nature 

of probability underscores why hypothesis testing is essential. 

 

3.4 The 0.05  

We have already concluded that the Null Hypothesis is to be rejected when the p-value 

is sufficiently low. But how low is ‘sufficiently low’? 

Let us set up a thought experiment, with no more than a coin and generous imagination. 

We toss the coin and find Tails. We continue tossing and find Tails every time. Most 

people would begin to feel there is something wrong with the coin by the 4th or 5th 

consecutive Tails. The probability for 4 consecutive Tails with a fair coin is 6.25% and 

for 5 Tails is 3.25%. So, 5% or p=0.05 is certainly a value that most would consider 

quite unlikely. Ronald Fisher, considered the most important statistician of the 20th 

century, introduced the p=0.05 as a cut off value in his 1925 publication Statistical 

Methods for Research Workers. It is safe to say that the stature of Fisher was enough 

to deeply entrench this value in research publications. Apart from this, there is very 

little rationale for this specific value of 0.05. As one statistician put it, “Surely God loves 

the 0.06 as much as the 0.05”. However, in the real world, good luck pushing past 

journal editors any article with the cut off placed at any other value! 

0.0009
0.0098

0.0439

0.1172

0.2051

0.2461

0.2051

0.1172

0.0439

0.0098
0.0009

0

0.05

0.1

0.15

0.2

0.25

0.3

0R 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R

Chart 1



 6 

Applying the p=0.05 cut off to Table 1 [and Figure 1], we see that the Null Hypothesis 

is to be accepted for Red pills between 3 and 7. For the other values, we would have 

to conclude that the Alternate Hypothesis is to be accepted. In other words, we would 

infer that the Red pills and Blue pills are not equal in the population. If we find 0, 1 or 

2 Red pills out of 10, we would conclude there are more Blue pills. With 8,9 or 10 Reds, 

we conclude there are more Red pills in the population. 

0 Reds, 10 Blues p[0R, 10B] 0.0009 {H1} 

p[B]>p[R] 1 Red, 9 Blues p[1R, 9B] 0.0098 

2 Reds, 8 Blues p[2R, 8B] 0.0439 

3 Reds, 7 Blues p[3R, 7B] 0.1172 {H0} 

p[R] = p[B] 4 Reds, 6 Blues p[4R, 6B] 0.2051 

5 Reds, 5 Blues p[5R, 5B] 0.2461 

6 Reds, 4 Blues p[6R, 4B] 0.2051 

7 Reds, 3 Blues p[7R, 3B] 0.1172 

8 Reds, 2 Blues p[8R, 2B] 0.0439 {H1} 

p[R]>p[B] 9 Reds, 1 Blue p[9R, 1B] 0.0098 

10 Reds, 0 Blue p[10R, 0B] 0.0009 

Table 2. 

3.5 Probability Distributions 

Revisiting Chart 1, we remind ourselves that the chart shows all possibilities and the 

probability associated with each one of them. For the situation of equal probabilities 

and a sample of 10 pills, there is nothing more to know. As expected, all the 

probabilities add up to 1(apart from rounding error). The chart then is said to constitute 

a probability distribution. Specifically, Chart 1 is an example of a Binomial Distribution. 

Chart 2 shows three such distributions for a sample of 10 pills. They differ in the 

probabilities p[R] and p[B]. The three sets of probabilities are 

 

p[R] = p[B] = o.5 

p[R] = 0.9, p[B] = o.1 

p[R] = 0.1, p[B] = o.9 
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Figure 2. 

This chart once again underscores how important it is to be wary while drawing 

conclusions from our findings. Even when the population of pills contains 90% Reds, 

the chances of drawing exactly that proportion out of a sample of 10 pills is just 

38.74%. 

3.6 Sample Sizes 

In the above discussion we varied the relative number of the pills and their probabilities, 

but what if we vary the sample size? We are in no way limited to 10 and can easily 

extend the same analysis to larger samples. We assume the same Null Hypothesis that 

the Red and Blue pills are equal in number in the population. To reiterate, 

{H0}  p[R] = p[B] (=1/2) 

{H1}  p[R]  p[B] 

0R 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R

p[R]=0.5 0.0009 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098 0.0009

p[R]=0.9 1.00E-10 9.00E-09 3.00E-07 8.00E-06 0.0001 0.0015 0.0112 0.0574 0.1937 0.3874 0.3487

p{R]=0.1 0.3487 0.3874 0.1937 0.0574 0.0112 0.0015 0.0001 8.00E-06 3.00E-07 9.00E-09 1.00E-10
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(By now, the above statements should make clear sense. If they do not, it would not 

be a bad idea to restart Section 3!) 

Let us now consider a sample of 20 pills. We construct a probability distribution in the 

same way as Chart 1, by basically enumerating all the possible outcomes and 

calculating their probabilities. 

 

Figure 3. 

This distribution looks, of course, very similar to Chart 1. But the interesting aspect is 

when we apply the 0.05 cut-off value to accept or reject {H0}. The above chart shows 

that we would have to accept {H0} if our study finds 7 to 13 Red pills, since the 

probabilities of these are above 0.05. For all others, probabilities are lower than 0.05 

and we would have to reject {H0}. Recall from Table 2, that the Null Hypothesis for a 

10 sample would have to be accepted for finding 3 to 7 Red pills. When the sample size 

is increased to 20, the range of acceptance of the Null Hypothesis seems to have 

narrowed. 

Building on that theme, let us look at greater sample sizes and cut-off values for {H0} 

acceptance/ rejection. Table 3 shows these values for sample sizes 10, 20, 50, 100 and 

1000. 

Sample Size Accept {H0} Reject {H0} 

10 3 Reds to 7 Reds 0 to 2 Reds + 8 to 10 Reds 

20 7 Reds to 13 Reds 0 to 6 Reds + 14 to 20 Reds 

50 21 Reds to 29 Reds 0 to 20 Reds + 30 to 50 Reds 

100 46 Reds to 54 Reds 0 to 45 Reds + 55 to 100 Reds 

1000 472 Reds to 528 Reds 0 to 471 Reds + 529 to 1000 Reds 

Clearly, there is a tendency for the range of acceptance of the Null Hypothesis to get 

narrower as the sample size gets larger. In other words, we are more likely to reject 

the Null Hypothesis as the sample size increases. In research studies with a small 
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sample, therefore, a large difference would be necessary to reject the Null Hypothesis. 

Even if an intervention did produce a difference, the magnitude of this difference would 

have to be large for us to be able to prove it statistically. A larger sample size makes it 

easier to demonstrate this difference. However, there are numerous practical difficulties 

in increasing the sample size. Calculating an adequate sample size is, therefore, of 

great importance and will be dealt with later. 

 

3.7 Putting it all together 

A lot seems to have happened in this section. To summarise, we conjured up a world 

populated by pills of the Red and Blue varieties. We assumed that they were equal in 

number and designated it as the Null Hypothesis. This leads to the assumption that 

there is an equal probability of picking the Red or Blue pills out of this population. We 

picked a sample of 10 pills and found 6 Reds. Based on some concealed mathematics, 

we realised that this is quite possible. Finally, we demonstrated that with smaller 

sample sizes even large differences may not be ‘statistically significant’. This 

significance was arrived upon the basis of the p-value, which is the probability of finding 

the observations that we did, given that the H0 is true. It is important to understand 

that the p-value is not the probability of the H0 being true. Hypotheses do not have 

probabilities attached to them, but data sets do (more in Appendix 4). 

This is all very well, but how does all this translate to clinical research? When we start 

a research project, we have no information about the population involved. Till now we 

have basically discussed the behaviour of a sample from a known population. In actual 

research, this procedure has to be reversed. Our sample provides some estimates, that 

we intend to extrapolate to the population. When we found 6 Reds out of 10, we had 

to conclude that we cannot confidently declare there are more Reds in the population. 

Had we found 600 out of 1000, however, we would be confident that there have to be 

more Reds than Blues in the population [refer Table 3- 600 Reds is in the Rejection 

area for {H0}]. This entire process is the core of statistical analysis.  

 

In a nutshell, say a new procedure is performed in 10 patients with 6 ‘Good’ and 4 

‘Bad’ outcomes can we conclude the procedure is useful? No. Certainly, not yet. Sadly, 

for most clinical studies outcomes are not so simply defined. Usual outcome measures 

are continuous data, where a large number of values are possible. Obviously handling 

them statistically involves more complex mathematics. But the principles and ideas set 

up above are more or less still applicable. 



 
*Bennett CM, Baird AA, Miller MB, Wolford GL. Neural correlates of interspecies perspective taking in the post-mortem Atlantic salmon: an 
argument for proper multiple comparisons correction. J Serendipitous Unexpected Results 2009; 1: 1–5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. The Normal Distribution 

In the prior sections, we were introduced to probability distributions. To put it simply, 

they plots the probability associated with all possible outcomes. For discrete values the 

plots are similar to bar charts, as above. However, for continuous data they are smooth 

curves – the most famous and well known being the bell curve. 

While the term ‘bell curve’ refers to the shape of the curve, mathematically it represents 

the normal distribution. The form that this curve takes is defined by a specific 

equation, similar to the equations for a line or a circle that many may be familiar with 

from school. For any value of a variable, the equation gives an associated frequency of 

its occurrence. Figure 4 shows a typical normal distribution, with Mean of 2 and 

Standard Deviation of 0.5. An immediate striking feature of note is its symmetry, with 

half the values to the left of the value ‘2’ and the other half to the right. By definition, 

2 is also the Median. Since the peak of the curve is also at 2, that makes it the Mode 

as well. Therefore, the elegant symmetry of the normal distribution means that its 

Mean, Median and Mode are all equal. 

The distribution is also defined by its standard deviation, for Figure 4 this being 0.5. 

Let us now focus on the portion of the graph one SD to either side of the Mean i.e., 

between 1.5 and 2.5. It is obvious that this portion of the graph contains most of the 

total area under the graph. You can go ahead and count the small squares contained 

GETTING IT DEAD RIGHT 

In a study by Bennett et al,* the researchers performed fMRI of a subject at the time of 

presenting it with some pictures of humans in social situations. They found active signals in 

the brain cavity and dorsal column of this subject. However, there was a twist to this study, 

which is quoted in the Methods section of their paper – “One mature Atlantic Salmon (Salmo 

salar) participated in the fMRI study. The salmon measured approximately 18 inches long, 

weighed 3.8 lbs, and was not alive at the time of scanning. It is not known if the salmon was 

male or female but given the post-mortem state of the subject this was not thought to be a 

critical variable”. 

This article was not entirely in jest. Image acquisition in MRI involves interpreting signals for 

significance. The researchers illustrated how false positive signals are almost guaranteed 

when a very large sample is analyzed, since they had studied 130,000 voxels. As is 

customary in fMRI circles, the p-value had been set at 0.001 or 50 times stricter than the 

usual 0.05! They concluded that statistical methods need to be improved to avoid such 

errors. The group was awarded the 2012 Ig Nobel Prize in Neuroscience ‘for demonstrating 

that brain researchers, by using complicated instruments and simple statistics, can see 

meaningful brain activity anywhere’. 



 

in this portion as a measure of area. Then let us sit back and widen our focus area to 

two SDs on either side of the Mean, between 1 and 3. Here it appears that almost the 

entire area under the graph is encapsulated within this portion. There is very little 

remaining in the portions of the graph to the left of 1 and to the right of 3. 

 

Figure 4. Normal distribution with Mean 2 and SD of 0.5. Counting the small squares 

under the graph is an approximate method to estimate the area under the graph. 

 

If you actually had the patience and perseverance to count the small squares in Figure 

4, it would be possible to calculate the areas under different portions of the graph. Most 

would find ~70% of the squares in the interval of Mean  SD, and ~95% in the interval 

Mean  2SD. Fortunately, with the equation of the normal distribution, mathematicians 

can calculate exactly these areas. These are illustrated in Fig 5 below. The area 

contained in each segment is provided in percentage values. 

 

4.1 Why so Normal? 

Carl Freidrich Gauss, considered the greatest mathematician in history, is often credited 

for introducing the Normal Distribution. Like so often in science, others like de Moivre 

and Laplace also made significant contributions prior to Gauss. Needless to say, the 



 

Normal Distribution and its properties are extremely difficult to comprehend non-

mathematically. A bit of historical perspective might go a long way in understanding its 

importance in statistics. We pick up the thread with Galileo in 1632, trying to make 

sense of measuring astronomical distances. His reasoning went as follows: 

 

The last couple of assumptions basically lead us to conclude that most of our 

measurements must be close to the true value. 

In the early 18th century, the equation for the normal distribution first makes an 

appearance from the work of Abraham de Moivre. Being a lifelong monetarily 

challenged mathematician, he supported himself as a consultant to gamblers at a local 

den. This led him to work on the Binomial distribution, which we have seen in our 

Red/Blue Pill example. He worked out that for large numbers, the Binomial Distribution 

is approximated by the Normal Distribution [please compare the shapes of Figures 3 

and 4]. However, in the statistical sense, the Normal Distribution appears in history 

from a stupendous feat of applied mathematics from Carl Gauss. 

On 1 January of 1801, Guiseppe Piazzi of Palermo noticed a new celestial object which 

he considered a dwarf planet and named it Ceres. He was able to observe and make 

There must be a true distance, which is 
a single value

Repeated observations give different 
values, which must be due to errors in 
measurement

Since these errors must be random, we 
expect them to be symmetric i.e., 
measurements must be larger or lower 
than the true value with equal frequency

For practical reasons, small errors must be 
more likely than large errors.



 

positional measurements for only 6 weeks, before it was lost in the Sun’s glare. These 

measurements were insufficient to predict where Ceres would reappear in a about a 

year or so. Enter Gauss, then 24 years old and not yet ‘The Great Gauss’ as he was 

later named. Expanding on basically the same ideas as Galileo, with a generous dose 

of mathematical muscle applied to Piazzi’s measurements, Gauss predicted the possible 

location of Ceres’ reappearance. Many astronomers also made predictions of different 

locations of the sky [Level V evidence!]. On 31 December that year, Gauss was proved 

right. He had used the, now standard, least squares method on errors to find the most 

probable orbit. These errors were proved to be normally distributed, which he then 

used to make the prediction. It is instructive to note how this episode closely resembles 

any modern research – a set of planetary observations [the sample] was used to make 

valid predictions on the orbit [the population]. A further development was the Central 

Limit Theorem, formalised by Laplace in 1810. 

The credit for bringing the Normal Distribution to the life sciences, from just a theory 

of errors, goes to Adolphe Quetelet. In 1846, he contended that the recently published 

Chest Girth measurements of 5738 Scottish soldiers were normally distributed. Many 

prominent scientists of the era picked up this assertion and a slew of measurements 

appeared to prove that many biological characteristics were near normally distributed. 

Quetelet is now mostly remembered for the Quetelet index, better known by the term 

Body Mass Index [BMI]. 

So why do so many characteristics, like height or weight, appear to be approximately 

normally distributed? Observational or measurement errors are mostly random errors 

with a large number of factors affecting their magnitude. Similarly, many biological 

characters are affected by a large number of factors which are all not known. So, both 

these situations can be expected to have similar mathematical behaviour. It is no 

surprise that the Normal Distribution turns up in the world around us so frequently. It 

is defined to fit in such situations. 

 

4.2 The Central Limit Theorem 

The importance of the Normal Distribution comes not only from its supposed ubiquitous 

presence, but also from its gratifying appearance in the Central Limit Theorem [CLT]. 

To help understand the Theorem, we go back to the Red and Blue pills. As at the 

beginning, we take 10 pills, then note the number or Reds. We replace these pills, then 

take another sample of 10 pills. We continue with this process, each time noting the 

number of Reds. Let us say, having nothing better to do, we end up taking many 

thousands of samples. What can we now say about the number of Reds that were 

picked up in each sample? 

The Central Limit Theorem tells us that the number of Red pills per sample should be 

near normally distributed. If we plot the number of times we picked up 0 Reds, 1 Red, 

2 Reds…. etc, that graph would look like a bell curve. A pause is needed here, where 

we rewind to Figure 1. We had discussed that Figure 1 represents a Binomial 

Distribution. It is important to remember that Figure 1 characterises the probabilities 

of one sample of 10 pills. The CLT tells us about the behaviour of many such samples. 



 

When the results of many samples are plotted, we should get a normal distribution. 

This distribution of repeated samples is called the ‘sampling distribution of the means’. 

The CLT goes on to say that larger the size of these samples, the closer the distribution 

gets to Normal. 

The final important aspect of the CLT is that the initial distribution does not matter! For 

each sample the distribution can be of any variety [Normal or any other], the sampling 

distribution of the means still tends to a normal distribution. Since the Normal 

Distribution has mathematical features that allow easy analysis, this single unifying 

feature leads to methods of testing hypotheses for a wide variety of situations. We 

know that the Normal Distribution is characterised by a Mean and SD. This sampling 

distribution of the means has a Mean equal to the population Mean and SD equal to the 

population SD/n [n = size of each sample]. 

At this point many may be saying to themselves, “We don’t really perform research 

this way; we do not take repeated samples and try to get at the true value of a 

population”. Very true! When we complete a study, we have just one sample to analyse. 

The point of the CLT is not to make us do the same study again and again. However, 

the CLT is the basis for developing tests, like the t-test, and has a rightful central role 

in inferential statistics. 

 

4.3 Working with the Normal Distribution – the z score 

We had already seen from Figures 5 and 6 that the area under the normal curve can 

be calculated with knowledge of the Mean and SD. The Z score measures the location 

of each point in units of SD. In simpler words, it measures how many SDs any point is 

from the Mean. Mathematically we can represent this by, 

Z = (X - ) / 

where X is our point of interest,  Mean and   Standard Deviation. 

A word about notation. Since statistics deals with a sample and population, symbols 

have to be carefully chosen to avoid confusion. For e.g., from any study we measure a 

mean which is the sample Mean. This sample Mean is what we use as an estimate of 

the population Mean, which is a different entity. Hence, it makes sense to have separate 

symbols for sample and population measures. The convention is to use Greek and/or 

Upper-Case letters for population attributes, and Roman counterparts for the sample. 

Table 4 shows these symbols. 

 

 

 



 

Attribute Population Sample 

Number of elements N n 

Mean  𝑥̅ [x-bar] 

Variance 2 s2 

Standard Deviation  s 

Proportions P, Q p, q 

Coefficient of Correlation  r 

 Table 4. 

To further understand the Z-score, let us take a look at Figure 6. This is the same as 

Figure 4 with an added point of interest. What is the Z-score of this point on the graph? 

On the x-axis, the point is at 2.7. Remember that this Figure had a Mean of 2 and SD 

of 0.5. Hence the Z-score is, 

Z = (2.7-2) /0.5  Z = 0.7/0.5 = 1.4 

 

Figure 6. The point at 2.7 has a Z score of 1.4. 

 

Calculating the Z-score allows us to calculate the area to the left or right of this point. 

That can be done from the equation for this distribution, with a sufficiently advanced 

knowledge of calculus. Thankfully for lesser mortals, standard tables are available that 

allow estimation of the area based on the z-score. For a z-score of 1.4, these tables tell 

us that ~92% of the area lies to the left of this point 



* Czitrom AA, Dobyns JH, Linscheid RL. Ulnar variance in carpal instability. J Hand Surg Am. 1987 Mar;12(2):205-8. doi: 

10.1016/s0363-5023(87)80272-1. PMID: 3559071. 

 

and ~8% to the right. We can also interpret that any random point has a 92% chance 

of being less than 2.7 and 8% chance of being greater than 2.7. Figure 5 showed that 

95.44% of the area under the Normal Distribution lies in the range  + 2 and  - 2. 

That can be taken as the area between the two points with Z-scores +2 and -2. 

Furthermore, to delineate an area of exactly 95% around the Mean, the points would 

be those with z-scores +1.96 and -1.96. 

To understand this better, let us assume that the distribution in Figures 5 and 7 

represents the pinch strength of an adult population in kilograms. From the above z-

score calculation, we can conclude that someone with 2.7kgs of pinch strength has 

better strength than 92% of the population. We can also invert the question. For e.g., 

what should be the grip strength to be in the top 1%? In other words, at what point is 

99% of area to the left? From the standardised tables, that z-score value turns out to 

be 2.33. We can now plug it in to the z-score formula to get our answer: 

Z = (X - ) /     2.33 = (X – 2)/0.5     x = 3.165 kgs 

So, all those with pinch strengths greater than 3.165 kgs can be considered to be the 

top 1%. In that sense, 3.165 kgs represents the cut off value for the top 1%. Similar 

cut off values are used in almost all statistical tests to decide significance. 

 

 
 
 
 

 
 
 
 
 

 
4.4 Applying a statistical test – a drive through example 

This section seeks to get a ringside view of the steps involved in any hypothesis testing. 

For that purpose, we will apply a classic test on the data from a classic paper in hand 

surgery. The paper being ‘Ulnar variance in carpal instability’ by Czitrom, Linscheid and 

Dobyns from 1987.* The test performed is the most commonly employed of all 

statistical tests (possibly of all time) – the t-test. 

The t-test has its origins in brewing quality stout beer. William Gosset, a chemist 

working with the Guinness Brewery in Ireland around the turn of the 20th century, 

needed to monitor the quality of the unique Guinness stout from small samples from 

large batches. He developed the ‘hypothesis test statistic’, which was later shortened 

HIGH WATER 

In April 1997, the city of Grand Forks in USA received a flood forecast warning from their 

National Weather Service [NWS]. The city braced for a record 49 feet flood level in the Red 

River, repairing levees up to 51 feet in height. However, the river crested at 54 feet, 

inundating an area up to 3 miles inland and necessitating the hurried evacuation of 50,000 

people. Estimated losses from the flood for the region was $3.5 billion. Later reviews 

revealed that the NWS forecasts have an error margin of ±9 feet. Assuming that the error is 

normally distributed, this leads to a 35% probability of a flood level greater than 51 feet. 

Providing a single value forecast of 49 feet gives the impression of certainty, which caused 

the officials to fail to prepare for the eventual disaster. An old joke seems apt: the statistician 

drowned in a river that was 3 feet deep on average. 



 

to the t-statistic, for this purpose. Since Guinness was not too keen on divulging its 

processes, Gosset published his articles under the pseudonym of Student, leading the 

test to be christened Student’s t-test. Later giants like Pearson and Fisher expanded 

on Gosset’s work to place the t-test on a firm mathematical basis. It is fascinating today 

to learn that Gosset wrote to Fisher “you are the only man that’s ever likely to use 

them”! 

The t-test was used in the above article to study the hypothesis that ulnar variance 

affects patterns of carpal instability. The data of interest to us is summarised in Table 

5. The Mean and SDs of the ulnar variance of three groups are given – normal controls, 

acute scapholunate dissociations and old scapholunate injuries. Note that the entire 

data is not available, but for the t-test this is not necessary. 

Variance [in 

mm] 

Normal 
Scapholunate 

Dissociations 

Old 

Scapholunate 

dissociations 

with arthrosis 

Mean -0.38 -1.36 -0.49 

SD 1.48 1.60 1.31 

n 65 78 53 

Table 5. 

The t-statistic is a value similar to the z-score, calculated from the data, given by 

t = [𝑥1̅̅ ̅ – 𝑥2̅̅ ̅] / st 

where the numerator is the difference between two groups’ Means, and st is a 

combination of the SDs of the groups. The exact formulae for calculating st involves the 

SDs and the sample sizes of the groups and are not detailed here. 

The point of calculating the t-statistic is that it follows a unique distribution called the t 

distribution. The exact shape depends on a value called degrees of freedom [df], which 

depends on the sample sizes. The df for a two-sample test is given by (n1 -1) + (n2 – 

1), where n1 and n2 are the number of elements in each group. Hence, for a comparison 

of the Normal and Scapholunate dissociation groups from Table 5, the df would be (65 

– 1) + (78 – 1) = 141. For the same comparison the t-statistic can be calculated to be 

3.773. 

Similar to the z-score, this t value allows calculating the probability of 3.773 at df of 

141. This is the p-value and for this example is 0.000237. This being much lower than 

the usual cut off of 0.05, means that the difference between the groups is statistically 

significant. In addition, the t value also has cut offs for 95% area similar to the z-score. 

While for the z-score this is always +1.96 and -1.96, for the t-statistic this depends on 

the df. For a df of 141, these cut offs are +1.977 and -1.977. Our value of 3.773 is 

outside this range and therefore indicates, once again, of a statistically significant 

difference. 



 

Proceeding to the comparison of Normal wrists vs Old scapholunate dissociations, the 

above procedure is carried out again. The df is (65 – 1) + (53 – 1) = 116. The t-statistic 

can be calculated to be 0.423. The cut off values for t at 116 df are -1.981 and +1.981. 

Since our t-statistic lies within this range we have to conclude that the Means do not 

have a statistically significant difference. The p-value turns out to be 0.6734, which is 

much larger than 0.05 and confirming that the groups are not statistically different. 

For both the above comparisons, the Null Hypothesis would be that the groups are not 

different, essentially contending that the Means are not different and part of the same 

distribution. In the first instance, Normal vs Scapholunate, the t-test tells us that this 

data has a probability of only 0.000237 (0.0237%), if the Null Hypothesis is true. Being 

less than our pre-decided cut off of 0.05 (or 5%), we have to reject the Null Hypothesis 

and conclude that the Means of these groups come from different distributions. In the 

2nd comparison, the data has a probability of 0.6734 (or 67.34%). We are unable to 

reject the Null Hypothesis in this case. 

The idea of this example is not to encourage painful calculation of cut offs and p-values. 

But rather to illustrate the hidden workings of a statistical test. When raw data gets 

converted magically to a p-value, it is easy to lose track of what the test actually means. 

Knowing, at least broadly, how this is done should help choose the right test for the 

data to be analysed. 

 

5. The Right Test 

Not too long ago performing a statistical test required knowledge of its inner workings, 

along with protracted calculations. Then would be needed the appropriate set of tables 

to finally come to a p-value. However, the world has leaped forward enough to have 

even statisticians not needing to know exact formulae for each statistic. On the other 

hand, there are a multitude of tests and their variations available to choose from. All 

that is required at present is to choose the proper test and the rest can be carried out 

with suitable means (Appendix 2). 

5.1 Types of Data 

Data is collected in terms of Variables, which is a simple way to place data into its 

appropriate class. Any data can be divided into two broad classes: Categorical and 

Numerical. Categorical data just consists of categories into which elements have 

been arranged. Gender is a common example, with two or more categories. The MRC 

grading of muscle strength consists of 6 categories (0 to 5 grades). Here Gender and 

MRC Grade are the variables, which can only be described in categories. Numerical 

data consists of variables that can be measured. Height and Weight being prime 

examples. They can be measured to any degree of accuracy that we please to achieve. 

Contrast that with the variable Cancer Stage, which is described in categories I through 

IV with elements being counted into each of them. So Categorical data comes in classes 

and needs to be counted, while Numerical data can be directly measured. 



 

We can further sub-divide data in to scales as in Figure 7 (more details in the earlier 

Statistics Article). The division of Categorical data into Nominal or Ordinal is simply 

based on whether the categories have a definite Order. So, Gender would be Nominal, 

while MRC Grading is Ordinal. It is also useful to divide Numerical data into Discrete 

or Continuous data. Discrete data consists of whole numbers only, while Continuous 

data can take fractional and irrational values. 

 

Figure 7. 

 

5.2 Parametric vs Non-parametric tests 

In Section 4, we had discussed the Normal Distribution and the Central Limit Theorem. 

We concluded with an example of the t-test. This test is based on an assumption of the 

underlying data being normally distributed. The t-statistic is a parameter that was 

calculated based on such as assumption. Similarly, other tests that rely on such an 

underlying assumption also have parameters calculated as part of the test procedure. 

These family of tests are termed parametric tests, implying the assumption of 

normality of data. 

It is obvious that not all data can be blindly assumed to be normally distributed. In 

many situations, data may be severely affected by extreme values and the distribution 

skewed in one direction. For an example, length of hospital stay after routine surgery 

clusters around a usual value, say 2-3 days. However, some patients may develop 

complications and require a prolonged stay. Such data is likely to be skewed with a 

long tail towards increasing stay. Another example is the APGAR score. Here the tail is 

towards lower scores, since most newborns have a score of 7 or above. In addition, 

since the Normal Distribution is a continuous distribution, discrete variables cannot be 

considered normally distributed by default. The VAS score is such an example as it is a 

discrete measure, often rated from 1 to 10. 

Non-parametric tests were developed to remove this assumption of normality of data. 

Hence, they are also aptly called distribution-free tests. These tests mostly involve 

ranking the observations and then performing calculations on these rankings. Examples 

Data

Categorical / 
Qualitative

Nominal Ordinal

Numerical / 
Quantitative

Interval Ratio
Discrete/ 

Continuous



 

include the Mann-Whitney Test, Wilcoxon Signed-Rank test etc. For most research 

situations, there is an alternative non-parametric test available that must be considered 

in lieu of traditional parametric tests. This immediately raises the question, “Why not 

just always use the non-parametric tests? And be done with the old-fashioned 

parametric ones”. 

The answer lies in that there is a trade-off involved. As is often in life, the wide 

applicability of the non-parametric tests comes with its own set of problems. Most 

importantly, they are less likely to find a significant difference between groups than 

parametric tests. In statistical parlance, they are less powerful. The moral of the story 

is to apply non-parametric tests only when the normality of the data is questionable. 

To help with that question statisticians have, of course, developed even more tests. 

These tests of normality can be applied to the data before proceeding towards 

hypothesis testing. For example, the Shapiro- Wilk test is a commonly employed test 

for normality which has a Null Hypothesis that the data is normally distributed. Much 

like any other test, the output is a p-value which can be used to accept / reject this 

Null Hypothesis. 

5.3 Independent and Dependent Variables 

We have already seen in 5.1 regarding types of data. Variables can also be considered 

Independent or Dependent, depending on the design of the study. The variables which 

are chosen/controlled by the investigator are the Independent variables. Other 

variables respond to changes in these variables and are termed the Dependent 

variables. It is easier to consider these as Input variables and Output variables. For 

example, in our example of the t-test the Input variable is the pattern of carpal 

instability. The division into Scapholunate Dissociation and Old Scapholunate Injury is 

Categorical Nominal scale data. The Output is the measurement of ulnar variance, 

which is Numeric Ratio scale data. Clearly understanding these differences is important 

in determining which tests to employ. 

5.4 Tests for matched or paired observations 

Study designs can involve observations made before and after intervention or exposure. 

Such data is called ‘matched or paired data’. It is obvious that we are actually interested 

in the difference between these paired observations. While it is possible to work with 

such data as two separate populations (like the t-test example in 4.4), specific tests 

have been designed for these situations for a better analysis. They are summarised 

based on the scale of data of the outcome in Table 6. 

The paired t-test is possibly the most common of these, performed in much the same 

way as our example in 4.4. However, it is important to note the wide applicability of 

the Wilcoxon Signed-Rank test. It is excluded only for Nominal scale data and is a non-

parametric option to be considered in almost all clinical situations. The test basically 

involves first tabulating the difference between each pair of observations. These 

differences are then ranked i.e., arranged from lowest to highest. These ranks are then 

used for hypothesis testing. 



 

Type of Output Variable Test 

Nominal McNemar Test 

Ordinal Wilcoxon Signed-Rank test 

Quantitative [Discrete/ Non 

normal] 
Wilcoxon Signed-Rank test 

Quantitative [Normal – 2 

observations] 
Paired t-test 

Quantitative [More than 2 

observations] 
Repeated measures ANOVA 

Table 6. 

5.5 Tests for independent observations 

We have already seen the t-test being applied to two independent groups – Normal 

controls and Scapholunate Dissociation. For more groups, the t-test is not valid. The 

Analysis of Variance [ANOVA] test was developed as an extension of the t-test for 

multiple groups. 

i) The t-test family of tests  

We had seen that the t-test is based on the assumption of underlying normality of data 

in two groups. The procedure involved calculating a t-statistic, the formula for which 

involved the difference between the two means in the numerator. It is apparent that 

this would not be possible for three means. We could, if we did not know better, perform 

a pairwise comparison. That means testing two means at a time, which for three groups 

ends up with three t-tests. But for more groups this idea ends up getting ugly pretty 

soon. With four groups we would need 6 t-tests and for five groups no less than 10 t-

tests. 

In 1919, Ronald Fisher joined the Rothamsted Experimental Station, one of the oldest 

agricultural research stations in the world. Faced with a vast amount of data collected 

since 1842, he came up with the ANOVA test for multiple groups. In short, the test 

involves comparing the variation between groups and within groups. Similar to the t-

statistic, the test calculates the F-statistic which is used for hypothesis testing. The F-

distribution, like the t-distribution, depends upon the degrees of freedom and the cut 

off values are calculated similar to the t-test. 

Note that the multiple groups mentioned here are in the Output variable. We can also 

have a situation with multiple Input or Independent variables. As an example, say we 

design a study comparing three different treatment protocols for Kienbock’s disease. 

One of the output variables could be grip strength, which can be assumed to be 

normally distributed. Adding a twist, we also decide to study the effect of gender on 

the outcomes. So now we have two Categorical [Nominal] Input variables, namely Male 

and Female. We can perform an ANOVA for the Males and another ANOVA test for the



* Grandizio LC, Beck JD, Rutter MR, Graham J, Klena JC. The incidence of trigger digit after carpal tunnel release in diabetic and nondiabetic 
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 Females. However, it is possible to expand the ANOVA to study the effect of Gender 

as well. This is called Two- way ANOVA, different from the One-way ANOVA we had 

discussed in the last paragraph. To cut a long story short, it is indeed important to 

exactly understand what is being measured and what are the comparisons made. This 

pretty much is all that is necessary to choose the right test. 

ii) Chi-square test 

The chi-square [2] test is applied for data with both the Input and Outcome variables 

in Categorical scale. Basically, data consists of the counts or the frequency of each 

category. The simplest instance is the 2x2 Contingency table, illustrated by an example. 

A retrospective study by Grandizio et al,* compared the incidence of Trigger Digits [TD] 

after Carpal Tunnel Release [CTR] in Diabetics vs Non-Diabetics. While they studied a 

number of risk factors also, their primary data is summarised in Table 7. 

 TD in 1 year post 

CTR 

No TD in 1 year Total 

Diabetics 21 193 214 

Non-Diabetics 42 961 1003 

Total 63 1154 1217 

Table 7. 

Here the Input variable is diabetic status in post CTR patients and the Outcome we are 

interested in is incidence of post op triggering. Both are Categorical [Nominal] scale 

data and Table 7 just counts the number of patients in each group. From the table, we 

note that 63 out of a total of 1217 patients developed post CTR triggering [about 

5.18%]. However, in Diabetics about 10% developed triggering [21 out of 214]. The 

chi-square test measures this difference between the observed frequency and an 

expected frequency based on the total values. Table 8 adds what the expected 

frequencies would be for data in Table 7. 

 TD in 1 year post 

CTR 

Expected 

No TD in 1 year 

post CTR 

Expected 

Total 

Diabetics 21 

11.07 

193 

202.93 

214 

Non-Diabetics 42 

51.92 

961 

951.08 

1003 

Total 63 1154 1217 

Table 8.



 

 

The chi-square goes on to, unsurprisingly, calculate the 2 statistic. Also unsurprisingly, 

the 2 distribution then allows calculation of cut off values and decide if the difference 

between observed and expected frequencies is significant or not. For the data in Tables 

7 and 8, the 2 statistic is 11.37, with a p-value of 0.0007. We conclude that Diabetics 

are more likely to develop TD within 1 year of CTR. 

iii) Correlation and Regression 

We are left with the broad class of situations where both the Input and Outcome 

variable are Numerical. This may sound confusing, so we proceed to an example. 

Meislin et al studied the difference in measurements of elbow ROM performed by 

goniometry vs smartphone photography. Now the Input variable here is the method of 

measurement (goniometer or photography) which is Nominal scale and the Output is 

Numerical (the ROM). Indeed, the authors perform a t-test between these groups to 

come up with a p-value of 0.90 for the Left elbow and 0.88 for the Right elbow, 

concluding both the methods are similar. However, what if we wished to predict the 

ROM measured via photography from a goniometer measurement? That is performed 

by Correlation and Regression analysis. 

In correlation, one set of values are compared to another to study how they vary with 

each other. Mathematically this translates to a correlation coefficient, that ranges 

between -1 and +1. Values around zero, positive or negative, signify that the sets do 

not vary together. Values closer to +1 signify that they both increase/ decrease 

together, and values close to -1 imply that when one set increases the other decreases. 

In the above Elbow ROM study, the correlation coefficients were 0.85 on the Left and 

0.76 on the Right. We conclude that the ROM measured by both the methods are 

strongly correlated with each other. Regression analysis take this further, by using the 

correlation coefficient to set up an equation connecting the sets of data. Feeding one 

value, like the goniometer measured ROM, then gives the most likely value of 

photography measured ROM. 

iv) Decision making 

Armed with the understanding of the previous sections, we are now ready for a step-

by-step decision tree for choosing the right test. As a disclaimer, this tree is intended 

only as an illustration of the steps involved. Every study may not fit exactly into these 

patterns, and each should be properly examined to come up with a choice of statistical 

test. 

The Input variable is often the starting point as it is the easiest to identify, being usually 

the basis of the study. We go on to recognise the Output variable(s), which is / are the 

data that is measured. Each combination of Input and Output variable then has a few 

options to choose from, as shown below. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A short decision tree for choice of test 

  

Input Variable: 

Categorical or 

Numerical? 

Outcome 

Variable: 

Categorical or 

Numerical? 

Chi Square test 

Number 

of 

groups? 

Normal 

data 

Non-

normal or 

discrete 

Logistic 

Regression 

Simple Linear 

Regression 

t- test Mann- Whitney test 

ANOVA test 

Kruskal-

Wallis test 

CATEGORICAL 

NUMERICAL 

Outcome 

Variable: 

Categorical or 

Numerical? 

Normal 

data 

Non-

normal or 

discrete 

CATEGORICAL 

NUMERICAL 

NUMERICAL CATEGORICAL 

TWO 
>2 



 

 

  

A GENDER BENDER 

Urban legend goes that in 1973 the University of California in Berkeley [UC Berkeley] was sued 

for gender discrimination in their admission process. While no record of such a lawsuit exists, the 

authorities were certainly worried that they may be sued. To their credit, they invited statisticians 

to analyze the data. The initial data, that had raised eyebrows, looked like this – 

 Applications Admitted (%) 

Men 8442 44 

Women 4321 35 

Total 12763 41 

 

Significance testing gave a p-value of ≈10-26 for this difference of 9%! The researchers then 

decided to break down the data department wise, with that of the largest 6 departments given 

below. 

Departments MEN WOMEN 

Applied Admitted (%) Applied Admitted (%) 

A 825 62 108 82 

B 560 63 25 68 

C 325 37 593 34 

D 417 33 375 35 

E 191 28 393 24 

F 373 6 341 7 

 

It appeared that women applied more to competitive departments with a lesser acceptance rate, 

while men applied more to departments with higher acceptance rates. This difference in 

proportions skews the total ungrouped data downwards for women. The tendency for ungrouped 

data to lead to different conclusions than grouped data is called The Simpson’s Paradox. The 

moral of this story? Look closely! 



 

 

6. Error, Power and Sample Size 

While the above sections covered the analysis of data mostly after a study has been 

conducted, some key concepts are necessary for actually designing a project. It is 

critical to have a prior understanding of the nature of data expected  to be collected. 

The statistician’s input is doubtless most decisive before the project commences. 

“To consult the statistician after an experiment is finished is often merely to ask him to conduct 

a post mortem examination. He can perhaps say what the experiment died of ” 

- Ronald Fisher 

6.1 Types of Errors 

We have seen that hypothesis testing involves setting up a Null Hypothesis [H0] and 

then testing its validity. Due the very nature of this set up there are some errors that 

are unavoidable. The best that we can hope for is attain a minimum state for these 

errors. It is important to realise that, apart from these, there are avoidable errors that 

creep in due to the study design or practical difficulties (for e.g. a small sample size). 

These errors are too numerous to enlist, but adhering to basic principles should help 

minimising them as well. 

Table 9 shows the usual setup of hypothesis testing, comparing the truth of the Null 

Hypothesis [True or False] with the result of the study [Accept or Reject]. 

 Null Hypothesis [H0] 

Result 

True False 

Accept CORRECT Type II () 

Reject Type I () CORRECT 

 Table 9. 

We see that there are two possible errors – rejecting a true H0 and accepting a false 

H0. For easier understanding let us compare these with our justice system. The Null 

Hypothesis is similar to the presumption of innocence (‘innocent until proven guilty’). 

All accused are presumed innocent until enough evidence proves their guilt ‘beyond 

reasonable doubt’. In this analogy, a Type I error is when we find an innocent person 

guilty. The H0 that a person is innocent, has been rejected in spite of it being true. So 

a Type i error incarcerates innocents. On the other hand, when a guilty person is found 

innocent a Type II error has occurred. The H0 was false, but we failed to reject it. The 

investigative team was not powerful enough to get the job done! As we shall see, this 

analogy is a useful definition of statistical Power. 

The Type I error rate, designated as , is directly decided by the level of significance 

chosen for the study. When the level of significance is chosen at a p-value of 0.05, we 

have set up to reject the Null Hypothesis when the probability of the data is less than 



 

 

5%. But ‘less than 5%’ is not zero. When the p-value for a study has been calculated 

to be 0.04 (or 4%), we reject the Null Hypothesis in spite of the 4% chance of being 

wrong. So the level of significance is also the chances of rejecting a true Null 

Hypothesis, which is the definition of Type I error. Hence, for most studies the Type I 

error rate or  would be 0.05. 

In an ideal world, we would certainly want to minimise all error rates. For the  error, 

this means setting the level of significance lower, say 1% or 0.01. This of course means 

that many more studies would end up with non-significant results. Bad news if you are 

trying to get your research published! 

6.2 Type II error and Power 

We had defined Type II error to be when we accept a false Ho, usually designated as . 

From Table 9, the rate of correctly rejecting a false Ho would be 1-. This is defined to 

be Power. In other words, it is also the ability to detect a difference that is actually 

present. Evidently, this is an important measure which we would like to maximise. 

However, unlike , Power and  are dependent upon multiple factors and so are more 

difficult to control. Some of these are – 

i) Effect Size : When comparing groups it is not just sufficient to detect a difference, it 

is also important to know the magnitude of that difference. For e.g., when measuring 

finger ROM after tendon repair, we may find a difference in ROM after using different 

repair techniques or rehabilitation protocols. But finding a 2o difference in mean ROM 

is not the same as ending up with a 10o difference, although hypothesis testing may 

find a significant difference in both the cases. Patients and caregivers would not feel 

that a 2o difference is of any practical use. This concept is captured as Effect Size (ES). 

Obviously, when the difference between groups is larger it would be easier to find that 

difference. From our understanding of Power, that means that Power should be higher 

for higher Effect Sizes. It is now considered good form to report Effect Sizes as well, 

when reporting on differences in means of groups. 

Calculating the ES is not just a simple matter of calculating the difference between 

means. The ES needs to be comparable between measures, which may be in different 

units. We would not be able to compare a 5o difference in ROM with a 2kgs difference 

in Grip Strength. To overcome this, the ES is standardised by dividing the difference of 

the means with a measure of the standard deviation of the groups. There are different 

ways described to calculate this standard deviation measure, leading to different 

measures of ES. In a nutshell, there are more than 50 (!) such measures known with 

names like Cohen’s d, Glass’ , Standardised Response Mean etc. 

ii)  error : The Type II error rate and Power are actually dependent on the Type I error 

rate as well. This may seem surprising at first, but it easy to see why. Let us say we 

attempt to decrease the  by decreasing the level of significance to 1% from the usual 

5%. This makes it more difficult to reject the H0. Since Power is a measure of correctly 

rejecting the H0, it also decreases (or Type II error increases). 



 

 

iii) Sample Size : Instinctively, we feel that a larger sample size should help us reach 

the right decision. This is, thankfully, true mathematically as well. A larger sample size 

should help us correctly reject a wrong H0, increasing Power. The next section deals 

with the interplay of Power, ES and sample size calculation. 

 

6.3 Sample Size calculation 

We have come, at long last, to what should be one of the initial steps of a study. 

However, sample size calculation involves understanding a broad range of concepts. In 

fact, as a final step, we require to understand Confidence intervals [CI]. Refreshing up 

on Sections 4.2 and 4.3 would be useful. 

We know that our sample mean (𝑥̅) is only an estimate of the true population mean 

(). Such an estimate is called a point estimate. Now we know from the Central Limit 

Theorem (CLT) that the sampling distribution of the means has a mean equal to the , 

and a standard deviation equal to /n. This knowledge allows us to make an interval 

estimate of  from 𝑥̅. With 95% confidence we can estimate that the  lies within an 

interval 1.96SD on either side of 𝑥̅. This is called the 95% Confidence Interval for the 

mean [95%CI]. 

95% CI → [𝑥̅ + 1.96/n, 𝑥̅ - 1.96/n] 

The general formula for a CI would be z./n, where z is the z-score for the desired 

level of precision. For 95%, this would be 1.96 as seen earlier. 

Now let us set up to perform a study that plans to estimate a mean with 95% 

confidence. The interval on either side of the mean can be taken as the error that we 

are ready to tolerate. Let us call it E. 

E = 2 x z. /n 

The additional 2 is since we have to take the range on both sides of the mean, each 

side being z. /n. 

Rearranging, 

n = 2z x / E    n = 4z2.2/ E2 

Let us take an example and work out a needed sample size. We plan to perform a study 

on the functional outcome after carpal tunnel release, with grip strength as a measure. 

Some assumptions are required for all sample size calculations. Firstly, we want to our 

grip strength to be correct within a range of 3kgs because a wider interval would be 

clinically less useful. So this becomes our margin of error (E). From historical data, we 

find that the standard deviation of grip strength in the population is about 6kgs, which 

would be our estimate for . The z is 1.96 when we set our level of significance at 0.05. 

Plugging them all in, n = 4x1.962x62/32 = 61.47  62 



 

 

Since we are calculating a minimum sample size we must round up to the nearest whole 

number, as people do not come in fractions. We conclude that a sample size of 62 is 

required to measure the grip strength to within a 3kgs range with 95% confidence. 

But this is not the end of the story, as usual. The above was a simplistic analysis 

illustrating the general principles. However, in practice, different formulae are required 

for different situations. As another example, the sample size calculation for a 

comparison of two means and Numerical scale data is given by –  

n = 2[
𝑧

1−
𝛼
2

+𝑧1−𝛽

𝐸𝑆
]2 

where n is the minimum size of each group,  and  are the rates of Type I and II errors  

and ES is Effect Size. 𝑧1−
𝛼

2
 and 𝑧1−𝛽 represent the z-scores for these error levels. 

We know that the usual  is set to be 0.05, while most agree that  must be no more 

than 0.2 or 20%. This choice of  translates to a Power of 80%. Under these standard 

circumstances the above formula can be simplified to, 

n = 2[
1.96+0.84

𝐸𝑆
]2 = 

15.7

𝐸𝑆2  

Recall that the ES is a complex measure calculated as a ratio of the difference of means 

and standard deviation. As an example, say we perform the above study on grip 

strength after carpal tunnel release as a comparison of endoscopic and open 

techniques. We assume that a 3kgs difference would be clinically important, with the 

estimate for  being 6kgs. Then a crude estimate for ES is 3kgs/6kgs = 0.5. From the 

above formula, we get 

n = 15.7 / 0.52 = 62.8 ~ 63 

We conclude that to detect a difference of 3kgs between groups, with 80% power, we 

need 63 patients in each group. 

Let us step back and digest all this number crunching. In the first example, the sample 

size calculation was performed in the context of estimating a mean grip strength. In 

the second, calculations were performed for hypothesis testing for the difference 

between two groups. Sample size calculations are performed always in the specific 

framework of the study. In summary, it is not important to know all these formulae so 

much as to understand the context of the calculation. As long as this is understood, the 

calculation can be performed via some of the resources detailed in the Appendices. 

  
STS – 51 – L 

Mission STS-51-L was the tenth flight of the Space Shuttle Challenger. On January 28, 1986, Challenger 

took off from the Kennedy Space Center with 7 crew members on board. The launch was a much-

publicized event as one of the crew members was a high school teacher, Christa McAuliffe, for inspiring 

interest in science. About 17% of the US population watched the launch live, including children at school, 

when the shuttle exploded at an altitude of 15kms about 73 seconds after lift-off, killing all crew 

members. To address the concerns of a grief stricken nation the Rogers Commission was set up under 

William P Rogers, ex Secretary of State and ex Attorney General of the USA. The commission included 

Neil Armstrong and the Nobel Prize winning physicist Richard Feynman. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

The Commission zeroed in on faulty rubber seals called O-rings in the booster. During the investigation, 

it was revealed that there were prior concerns about the O-rings failing at low temperatures during 

launch. These O-ring incidents had been identified and plotted vs temperature. Based on data similar 

to the figure below, the eventual conclusion was that temperature did not affect O-ring performance. 

 

 However, the Commission noted that the analysis was faulty since it did not include the flights where 

there had been no incidents. When these were included, the picture changed considerably. 

 

It was obvious that the flights without problems were all at higher launch temperatures. A correlation 

analysis showed no correlation for the first data set but the second figure displayed negative correlation, 

implying higher incidents at lower temperatures and vice versa. In the figure above, the lowest 

temperature without any incidents is 66o F. The Challenger was launched at temperatures of around 

30oF. It turned out that the go ahead for the launch was decided upon by NASA managers in spite of 

warnings from engineers. 

Amidst rising concerns that the O-ring anomaly may be buried to avoid showing NASA in poor light, the 

colourful and venerated Richard Feynman made sure this could not happen. During a televised hearing, 

he placed material from an O-ring in ice water and demonstrated that it became stiff. He was also irked 

by NASA insisting that the risk of catastrophic malfunction in the Space Shuttle was ‘necessarily 1 in 

105’. Feynman noted that this meant that NASA could launch a shuttle every day for 274 years while 

suffering, on average, only one loss. He reckoned this should be about 1 in 100 with 1 in 105 sounding 

wildly fantastical.  He anonymously polled the engineers themselves, who turned in estimates ranging 

from 1 in 50 to 1 in 200. When the Space Shuttle program was eventually cancelled in 2011, it had 

suffered two losses (Challenger in 1986 & Columbia in 2003) in 135 flights. 

Feynman wrote in his report, “For a successful technology, reality must take precedence over public 

relations, for nature cannot be fooled”. 



 

* I Ioannidis JP. Why most published research findings are false. PLoS Med. 2005 Aug;2(8):e124. PMID: 16060722; PMCID: 
PMC1182327. 

Epilogue 

In 1710, John Arbuthnot, a Scottish polymath and satirist, published his study on the 

observed ratio of male and female births. He used the baptism records of London for 

the years 1629 to 1710 to note that there were more male births in every one of those 

82 years. The ratio ranged from 1.156 in 1661 to 1.011 in 1703. He argued that if the 

natural ratio of births was indeed equal, we should expect to find more female births in 

half the years and more male births in the rest half. So, the probability of finding more 

male births in a year must be ½ and of that happening for 82 years in a row must be 

(1/2)82, which is in the range of 10-25! He concluded that the continued birth of more 

males that females was an ‘Argument for Divine Providence’. While that inference has 

its doubters, we can celebrate the study for the first significance test in history. The 

probability that Arbuthnot had calculated was basically a p-value with the Null 

Hypothesis that male and female births should be equal. 

Three centuries later, we seem to have come a long way. Talk of p-values and 

‘statistical significance’ pervades academia. However, all is not well in the world of 

research. We have already seen the dead salmon fMRI study as an example of how 

analysis can go wrong, when disconnected from reality. In a controversial 2005 article, 

John Ioannidis of Stanford University made the claim that ‘most published research 

findings are false’.* While the article has been critiqued for exaggerating the problem, 

most statisticians would agree that false positive results are far more than understood 

by the scientific community. This is also related to what has been termed the 

‘reproducibility crisis’ in science. Since, many initially ‘significant’ results may be false 

positives, repeat studies fail to come to the same conclusion. For e.g., the 

Reproducibility Project in Psychology repeated 100 studies from reputed journals. 

Originally, 97 of these studies claimed significant results, which reduced to 35 (36.1%) 

on the repeat attempt. Similarly, another study estimated that about $28 billion worth 

of preclinical research was non-reproducible. Much of the blame is laid on the flawed 

understanding of p-values and excessive importance attached to ‘statistical 

significance’. The American Statistical Association [ASA] came up with a ‘Statement on 

Statistical Significance and P-values’ in 2016 to clear the air on the issue. This is a must 

read for researchers and is discussed in Appendix 4. 

Let us conclude with the words of Ron Wasserstein, ASA Executive Director, explaining 

the need for the above statement – “The p-value was never intended to be a substitute 

for scientific reasoning. Well-reasoned statistical arguments contain much more than 

the value of a single number and whether that number exceeds an arbitrary threshold. 

The ASA statement is intended to steer research into a ‘post p<0.05 era’”. Which takes 

us back to Cicero at the beginning. 

 

 

   



 

 

Appendix 1 – Further Reading 

 
• Textbooks: Statistics by Freedman, Pisani and Purves is a classic textbook 

in this field but may be too technical for a beginner. Biostatistics: The Bare 

Essentials by Norman and Streiner is not only a witty read, but also an 
easier introduction to the sort of statistics that is most likely to come up in 
medical research. Biostatistics by Daniel and Cross is a more rigorous 

approach for those unfortunately mathematically inclined. 

 

• Casual Reads: Many books meant for the non-technical reader are excellent 

primers to the field of statistics. These do not focus on the tests or 
techniques, but on principles that drive research. Some are: 

 

o Statistics without Tears by Derek Rowntree is a comprehensive, all 

round introduction for non-mathematicians. 
o The Art of Statistics by David Spiegelhalter outlines the basic 

principles and has an excellent coverage of the dangers of bad 

statistics. 
o Freakonomics and its sequel Superfreakonomics by Steven Levitt and 

Stephen Dubner deals with the use of data in solving everyday issues. 

Well received for its humour and unconventional style. 
o The Signal and The Noise by Nate Silver focuses on prediction and 

forecasting, with common pitfalls made in interpreting data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 Appendix 2 – Statistical Resources 
 

It is a daunting task for statisticians to remember the formulae for each distribution 

and statistic. Surgeons, therefore, stand no chance in calculating these by 
themselves. Mercifully, the Internet has solved this issue for us and many such 
less fortunate practitioners who need to know statistics. We start with some, 

mostly free, software and then move on to fully free websites that get the job 
done. 
• Microsoft Excel: the classic spreadsheet software is a surprising statistics 

powerhouse. Most everyday statistics can be carried out with Excel, if you 
know where to look. Appendix 3 shows where to look. 
 

• JASP: an open-source platform supported by the University of Amsterdam, it 
is “free, friendly and flexible”. JASP allows all the basic tests to be done easily, 
with a simple and clean interface. Free textbooks are also available online to 

learn how to use JASP. Probably the best choice for a beginner in statistical 
testing. 

 
• PAST: acronym for PAleontological STatistics, PAST has been developed over 

two decades by the University of Oslo for palaeontologists. The current 

iteration is a no-nonsense comprehensive package that not just executes 
hypothesis testing but permits complex modelling and some involved data 
manipulation. It also comes with a much necessary manual for its myriad 

features.  
 

• SOFA: another open-source package that allows creating and exporting 

attractive charts, along with basic statistics. 
 

• Websites: 

 
o Vassarstats.net – free site that allows online statistical calculation. For 

clinical research, performs all the common tests likely to come up in 

clinical research. The interface is spartan and it takes time to get used 
to data entry. Also linked to an online version of the book Concepts & 
Applications of Inferential Statistics by Richard Lowry, erstwhile of 

Vassar College, New York, USA. 
o SISA [Simple Interactive Statistical Analysis] - simple interface that 

allows all the basic tests. Not as complete as Vassarstats but has extra 

features of sample size and power calculation. 
o OpenEpi – as simple as it gets interface, with all the basic tests. 
o Statibot – interactive site that works out the right test to perform from 

entered data and does some of them as well. It is a beautiful means to 
get introduced to hypothesis testing for the absolute beginner, as it 
works out an analysis from minimal presumptions. 

  

https://jasp-stats.org/
https://www.nhm.uio.no/english/research/infrastructure/past/
https://www.sofastatistics.com/home.php
http://vassarstats.net/
http://vassarstats.net/textbook/
https://www.quantitativeskills.com/sisa/
https://www.openepi.com/Menu/OE_Menu.htm
http://www.trigonella.ch/statibot/index.php


 

 

Appendix 3 – Excel-lent! 
 

MS Excel is a simple resource to get through basic testing, especially since most of us 

already use Excel for creating and storing our research data. While there are many of 

these utilities available under the Formulas menu (picture below), there is a neater 

approach with the Analysis ToolPak. 

 

 

The Analysis ToolPak is an add-in that needs to be, well, added in. 

 

 

Under the Data menu, click on Analysis Tools. This opens up the Add-ins menu, 

select Analysis ToolPak and click ‘OK’. This adds the add-in. 



 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

After this is done, the pack appears in the Data menu as the Data Analysis tab. 

 

 

On clicking this opens the window, 

 

The choices include Descriptive Statistics, t-tests, ANOVA, Correlation etc. 

Clicking on Descriptive Statistics leads to another window with options to add the 

data in a column or row for analysis, along with options regarding the output. 



 

 

 

In the above example the data has been selected in the column B and we have 

chosen the options for ‘Summary Statistics’ and 95% confidence level for the mean. 

The output is, 

 



 

 

Moving on to a testing example, say we need to perform a t-test on the following 

data. 

 

 

Open Data Analysis window and choose among the t-test options. 

 

 

 

It is always safe to choose the ’Unequal Variances’ option, unless there are strong 

reasons to assume that two samples have equal variances. If it is a paired or matched 

sample, choose ‘Paired Two Sample for means’ option. 

The next step is to select the two columns, here B & C, in the range for inputs. Since 

we are usually working with a Null Hypothesis that the groups are similar with similar 

means, the entry for ‘Hypothesized Mean Difference’ is 0. The  is by default set at 

0.05. 



 

 

 

 

 

The output is, 

 

We learn that the t-statistic has a value of. -3.585 and that a two tailed p-value is 

0.0049, which is statistically significant. 

Other tests can also be performed similarly and all it takes is a bit of fiddling to get 

them right! 

  



 

 

Appendix 4 – The American Statistical Association Statement on 
Statistical Significance and P-values 
 

This section lists the six principles set out in the ASA statement, with a short discussion 

clarifying their import. It is highly recommended to read the original statement. 

Principle 1: P-values can indicate how incompatible the data are with a 

specified statistical model 

P-values summarize the incompatibility of the data with a proposed model, usually this 

being the Null Hypothesis. Hence, P-values tell us the probability of our findings in the 

setting of the Null Hypothesis and the lower this value, the greater the incompatibility 

of the data with the Null Hypothesis. 

Principle 2: P-values do not measure the probability that the studied hypothesis 

is true, or the probability that the data were produced by random chance alone 

This is a tricky, yet critical point. From principle 1, the p-value is the probability of the 

data given the Null Hypothesis is true. It is wrong to say that it is the probability of the 

Null Hypothesis being true given the data that we have. The second (wrong) assumption 

is often called the prosecutor’s fallacy, possibly because such arguments have occurred 

in courts regarding DNA matches from crime scenes. Saying that ‘there is a 1 in a 

million chance of getting such a DNA match if the subject is innocent’ cannot be 

interpreted as ‘there is a 1 in a million chance of the subject being innocent’. 

Principle 3: Scientific conclusions and business or policy decisions should not 

be based only on whether a p-value passes a specific threshold 

The threshold for statistical significance at 0.05 or any other value is quite arbitrary 

and cannot be considered the goal of research. A hypothesis does not suddenly become 

true on one side of the divide and false on the other side. The use of ‘statistical 

significance’ as the only claim to ‘scientific truth’ is a distortion of the scientific process. 

Principle 4: Proper inference requires full reporting and transparency 

‘Researchers should disclose the number of hypotheses explored during the study, all 

data collection decisions, all statistical analyses conducted, and all p-values computed.’ 

Selectively reporting only those p-values which pass the ‘significance’ threshold, called 

data dredging/ significance chasing/p-hacking, leads to a false excess of significant 

results. 

Principle 5: A p-value, or statistical significance, does not measure the size 

of an effect or the importance of a result 

‘Statistical significance is not equivalent to scientific, human, or economic 

significance’. If large enough samples are studied, even a tiny difference can be 

statistically significant. This difference may not be of any importance in making 

clinical or policy decisions. On the other hand, large differences may not pass the 

https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


 

 

threshold of significance in small studies but may actually hold importance in 

decision making. 

Principle 6: By itself, a p-value does not provide a good measure of 

evidence regarding a model or hypothesis 

A p-value without the context of the study design and assumptions, other evidence 

and arguments etc provides limited information. Data analysis should not end with 

the calculation of a p-value. 

From the Conclusion, ‘No single index should substitute for scientific reasoning’. 

 

  



 

 

Appendix 5 – Only for the Math Enthusiast 
 

This section is for those who feel cheated by not knowing exactly how some of those 

probabilities and values in this article were calculated. And for the small minority who 

have been so inspired by all this that they are determined to learn more. 

Section2 

Calculating the probability of landing exactly 55 heads out of 100 tosses requires the 

Binomial distribution. The general formula for the probability of r events out of total n 

events is, 

(𝑛
𝑟

)𝑝𝑟𝑞𝑛−𝑟 = 
𝑛!

𝑟!(𝑛−𝑟)!
𝑝𝑟𝑞𝑛−𝑟 

where (𝑛
𝑟

) is the number of ways of choosing r events out of n, n! being the products 

of all whole numbers up to n; p is the probability of the event we are interested in and 

q the probability of that event not happening. The Binomial Distribution is valid where 

there are only two possibilities, like Heads/ Tails, Red/ Blue pills. When p and q are 

equally likely i.e. p=q=o.5, then the above can be simplified to, 

𝑛!

𝑟! (𝑛 − 𝑟)!
(0.5)𝑛 

So, getting 55 Heads out of 100 tosses has a probability of 

100!

55!45!
(0.5)100 = 0.04847 

And getting 60 Heads out of 100 tosses, 

100!

60!40!
(0.5)100 = 0.0108 

 

Similarly, in Sec 3.3 and Table 1 the above formula is used to calculate the 

probabilities. For e.g., the probability of drawing 6 Reds out of 10 (assuming they 

have an equal chance at in each pick), 

10!

6!4!
(0.5)10= 0.2051 

Section 4 

The equation of the normal curve is given by, 

𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒−1/2(

𝑥−𝜇
𝜎 )2

 



 

 

This equation is the general form for a normal distribution with mean 𝜇 and standard 

deviation 𝜎. 

The ‘Standard Normal Distribution’ is the normal curve with mean 0 and standard 

deviation of 1. This has the much simpler equation, 

𝑓(𝑥) =  
1

√2𝜋
𝑒−1/2(𝑥)2

 

The total area under the curve is 1. The area under any segment can then be calculated 

as the definite integral of the above expression. To calculate the area between -1 𝜎 and 

+1 𝜎, for the Standard Normal Distribution, is simply the area between -1 and +1, 

given by 

∫
1

√2𝜋
𝑒

−𝑥2

2
1

−1
𝑑𝑥 = 0.68269 

This means that 68.27% of the total area lies between ±1 𝜎. 

Section 6.3 

Sample Size formulae 

i) Estimation of a proportion 

In the context of a study that seeks to estimate a Categorical variable with proportion 

p with total width of error E, 

𝑛 = 4𝑍𝛼
2

 𝑝(1 − 𝑝)/𝐸2 , where Z is 1.96 for the usual 95% confidence level 

ii) Estimation of a mean 

𝑛 = 4𝑍𝛼
2

 
𝜎2/𝐸2 

iii) Hypothesis testing of Continuous outcome sample mean vs known population mean 

H0 →  = 0, and HA →  ≠ 0, where 0 is the known population mean [historical 

control]. 

𝑛 = [
(𝑍

1−
𝛼
2

+ 𝑍1− 𝛽)

𝐸𝑆
]2, where ES is Effect Size given by 

ES = ( - 0)/ 𝜎 

For the usual  of 0.05 and   of 0.2, this reduces to 
7.84

𝐸𝑆2 

  



 

 

iv) Hypothesis testing of two Continuous outcome sample means 

H0 → 1 = 2, and HA → 1 ≠ 2 

𝑛 = 2[
(𝑍

1−
𝛼
2

+ 𝑍1− 𝛽)

𝐸𝑆
]2 

For the usual  of 0.05 and   of 0.2, this reduces to 
15.7

𝐸𝑆2 
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